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Thanks to Alessio Marrani for pointing out some errors and lack of clarity in my work up
to now on my E8 Physics model ( viXra 1602.0319 etc ) regarding E8 Real Forms.

He motivated me to try to think more clearly about E8 Real Forms and their physical
significance, resulting in this paper.

Any errors herein are mine but any good basic ideas are due to Alessio.

Errors and lack of clarity in my work up to now with respect to E8 Real Forms are somewhat
similar to what happened earlier with my use of the terms Spinor and Pinor, something that |
attempted to clarify on my web site at http://valdostamuseum.com/hamsmith/clfpg.htmI#SPIN
where | said “... Sometimes | use the term Spinor, or Spin(p,q), when | really should use the term
Pin, or Pin(p,q). A physical significance of the difference is that Spinors and Spin(n) are related to
the even subalgebra of the Clifford algebra Cl(p,q) ( where Cle(p,q) = Cl(p,g-1) and Cle(p,0) =
CI(0,p-1) ) ) and so do not contain some reflection-related characteristics (such as parity reversal,
etc.), while such things are contained in Pin and Pin(p,q) because they are related to the full
Clifford algebra Cl(p,q) including its odd part. A paper by Marcus Berg, Cecile DeWitt-Morette,
Shangjr Gwo, and Eric Kramer, math-ph/00120086, discusses Pin and Spin. ... | hope that readers
can see what | mean from context, because | have misused the terminology in so many places
throughout my materials that | have not had the energy to correct them. However, | do not think
that my misuse of math terminology has resulted in wrong physics. That is, the ... E8 ... Physics
model is in my opinion physically realistic and valid, even though my description of it may use
some incorrect math terminology. ...”. The same hope is applicable here.

Wikipedia says “... There is a unique complex Lie algebra of type E8, corresponding to a
complex group of complex dimension 248. ... This is simply connected, has maximal
compact subgroup the compact form ... of E8, and has an outer automorphism group of
order 2 generated by complex conjugation. As well as the complex Lie group of type ES8,
there are three real forms of the ... E8 ... Lie algebra ...

compact form E8(-248) [and] split form, EVIII (or E8(8)) [and] EIX (or E8(-24)) ...".

In E8 Physics:

The Compact Form E8(-248) with Symmetric Space E8 / SO(16) represents Our
Planck Scale Universe when it emerged from its Parent Universe by Quantum
Fluctuation.

The Split Form EVIII E8(8) with Symmetric Space E8 / SO(8,8) represents Our
Universe during Octonionic Inflation with Non-Unitary Quantum Processes.

The form EIX E8(-24) with Symmetric Space E8 / SO*(16) represents Our Universe
with Quaternionic Unitary Quantum Processes after the end of Inflation.


http://valdostamuseum.com/hamsmith/clfpq.html#SPIN
http://valdostamuseum.com/hamsmith/clfpq.html#SPIN

Wikipedia says: “...

The compact form ... E8(-248) ... is simply connected and has trivial outer
automorphism group ... maximal subgroups of E8 ...[include]... E7 x SI(2)/(-1,-1)
and E6 x SU(8)/(Z/3Z) ... Symmetric space ...
E8/SO(16) ...
... E8/E7 x Sp(1) ...

The split form, EVIII (or E8(8)) ... has maximal compact subgroup Spin(16)/(Z/2Z),
fundamental group of order 2 (implying that it has a double cover, which is a simply
connected Lie real group but is not algebraic ... ) and has trivial outer automorphism
group ... Symmetric space ...
E8(8) / SO(16) ... E8(8) / SO(8,8) ... E8(8) / Sk(8,H) [ = E8(8) / SO*(16) ]...
... E8(8) / E7(7) x SL(2,R) ... E8(8) / E8(8) / E7(-5) x SU(2) ...

EIX (or E8(-24)) ... has maximal compact subgroup E7xSU(2)/(-1,-1), fundamental
group of order 2 (again implying a double cover, which is not algebraic) and has trivial
outer automorphism group ... Symmetric Space ...
E8(-24) / SO(12,4) ... E8(-24) / Sk(8,H) [ = E8(-24) / SO*(16) ]...

... E8(-24) / E7(-5) x SU(2) [Quaternion-Kahler] ... E8(-24) / E7(-25) x SL(2,R) ...”.

According to the book Einstein Manifolds by pseudonymous Arthur L. Besse
( a group of French mathematicians including Marcel Berger ):

Compact E8(-248) has symmetric space E8 / SO(16) of dimension 128 and rank 8
with Isotropy representation Spin(16) that is Rosenfeld’s elliptic projective plane
(Cax Ca)P2 (where Ca = Cayley Octonions and x = tensor product)

Split EVIII E8(8) has symmetric space E8 / SO(16) of dimension 128 and rank 8
with Isotropy representation Spin(16) that is Rosenfeld’s hyperbolic projective plane
(Ca x Ca)P2hyp

EIX E8(-24) has symmetric space E8 / E7 x SU(2) of dimension 112 and rank 4
with Isotropy representation A2 E7 x SU(2) that is the Set of

the (H x Ca)P2hyp ‘s in “(Ca x Ca)P2hyp”

(where A\ denotes exterior product representation and H = Quaternions)



Since my E8 Physics model is based on the 240 E8 Root Vectors being decomposed
into 128 corresponding to D8 Half-Spinors and 112 corresponding to D8 Root Vectors

the Real Forms of E8 for my E8 Physics model with Octonionic 8-dim Spacetime
prior to Post-Inflation Transition to (4+4)-dim Quaternionic M4 x CP2 Kaluza-Klein are

Compact E8(-248) with Rosenfeld’s elliptic projective plane
and
NonCompact Split EVIII E8(8) with Rosenfeld’s hyperbolic projective plane

Robert Gilmore in Phys. Rev. Lett. 28 (1972) 462-464 showed that Armand Wyler’s

use to calculate force strengths and particle masses as ratios of volumes of compact
domains of unit radius instead of measures on noncompact projectively related domains
is juatified, saying “... the replacement of a divergent value by a finite

value can lead to a well-defined and significant result. The occurrence of the Euclidean
volumes V(Qn) and V(Dn) should be considered a strong point of Wyler's result, rather
than an objectionable feature. These volumes arise naturally as the normalizing
coefficients in the Poisson and Bergman kernels, which are reproducing functions and
are defined in a nonlinear way. The Poisson kernel is the image of a space-time scalar
Green's function, when both arguments of the kernel are on the boundary Qn of Dn ...
Wyler's work has pointed out that it is possible to map an unbounded physical domain -
the interior of the forward light cone - onto the interior of a bounded domain on which
there also exists a complex structure. This mapping should prove of immense
calculational value in the future. This transformation from unbounded to bounded
complex domains is mathematically rigorous, and is valid ...”.

My E8 Physics model makes use of Wyler’s valid technique in calculation of ratios of
force strengths and particle masses, and it seems clear to me that the validity extends
to use of both Compact E8(-248) and NonCompact Split EVIII E8(8) Real Forms

in the basic structure of E8 Physics, so

Compact E8(-248) and NonCompact Split EVIII E8(8)
are both useful in describing E8 Physics of 8-dim Octonionic Spacetime
at High (from Planck through Inflation to End of Inflation) Energies.
EIX E8(-24) is not useful in that Energy Range
because it does not have a Symmetric Space with symmetry SO(16) or SO(8,8)



After the End of Inflation E8 Physics has a transition
from 8-dim Octonionic Spacetime to
(4+4)-dim Quaternionic Kaluza-Klein Spacetime M4 x CP2
where M4 is 4-dim physical Minkowski Spacetime
and CP2 = SU(3) / SU(2) x U(1) Internal Symmetry Space
so that
the Symmetric Space of E8 Physics goes from Octonionic SO(16) or SO(8,8) to
Quaternionic Sk(8,H) = SO*(16)
therefore Compact E8(-248), with no SO*(16) symmetry, is no longer useful
and
the useful Real Forms of E8 for E8 Physics after Inflation are
NonCompact Split EVIII E8(8) with E8(8) / Sk(8,H) = E8(8) / SO*(16)

and

EIX E8(-24) with E8(-24) / Sk(8,H) = E8(-24) / SO*(16)

How does the transition from SO(16) and SO(8,8) to SO*(16) work ?

Sigurdur Helgason,
in his 1978 book Differential Geometry, Lie Groups, and Symmetric Spaces, says: “...

SO(n, C): The group of matrices g in SL(n, C) which leave invariant the
quadratic form

2 + ... + 25, ie, ‘gg =1,

SO(p, q): The group of matrices g in SL(p + g, R) which leave invariant
the quadratic form

2 2 2 2 . ¢ -
X e Xy + Xp41 + .+ Xp+ar 1.€., glp.cg - 17.0‘

We put SO(n) = SO(0, n) = SO(n, 0).
SO0*(2n): The group of matrices in SO(2n, C) which leave invariant the
skew Hermitian form

— 2 8p41 F By — 2ofnpe t Tnpefs — oo — s, + 2002,

Thus g € SO*(2n) < g Jof = Ju» 88 = Lon-

... The groups listed above are all topological Lie subgroups of a general linar group ...



The Lie algebra for each of the groups above ... will be denoted by ... small ... letters ...

so(n, C) : {all n X n skew symmetric complex matrices},

so(p, q) : %(ti: .)X{:)

s0*(2n) : 2(_2 g:)

All X, real, X, X, skew symmetric of order‘
p and g, respectively, X, arbitrary ’

Zy, Zy n X n complex matric&,g
Z, skew, Z, Hermitian ’

SO0*(2n) N U(2n) = SO(2n) N Sp(n, C) = SO(2n) N Sp(n) ~ U(n).

Robert Gilmore
in his 1974 book Lie Groups, Lie Algebras, and Some of Their Applications, says “...

WEYL UNITARY TRICK. A real space with a signature (N, , N_)

can be converted to a space with metric (N, + N_, 0) by choosing a new set
of bases

(ela €2y s N L CN, 415 --es By, +N~)_’

(€1,€5,...,€x, i€y 41y, i€y, +N_) (3.19)
Of course, we have to go outside the field of real numbers to perform this
transformation. For example, the space-time of special relativity has metric
(+ + + —) with respect to the real contravariant bases (x, y, z, ct) but metric
(+ + + +) with respect to (x, y, z, ict). This transformation from a mixed to

a positive metric is called the Weyl unitary trick. It was apparently first used
by Minkowski.



Orthogonal S0(n, ¢) (M)

S0(p, 43 1) g, g F;\} A

B
SO*(2n) Al B A
-B* A*] iB

SO(n, r) (A)

3. ORTHOGONAL GROUPS. The real and complex orthogonal
groups SO(n, r) and SO(n, c¢) preserve the canonical bilinear symmetric
metric g;; = d;;. By (1.5), their algebras consist of real and complex antisym-
metric matrices:

M = AYED
Mi=—-M AVi=_—4i (1.20)

The complex extension of SO(n, r) is SO(n, ¢).
The Lie algebra for SO(p, q; r) is related to the Lie algebra for SO(p + g;r)
by the Weyl unitary trick:

—p— +—q— —p— —(q—
Tl ' 1 Weyl [ _ i
p| My |Miz| unitary P| My [iMy,
! AN
1 SR I
q| =My | Mj, trick q|—iMy" | My,
L i L |

so(p + q:r) so(p, q; 1) (1.21)

Here M,,, M,, are the compact subalgebras for SO(p, r) and SO(q, r). The
subspace generated by the p x g matrices M,, and iM,, are compact
generators for SO(p + ¢; r) and noncompact generators for SO(p, g; r),
respectively.



The matrix elements of M, are all real. Under complex extension,

complex

SO(p, g;r) —— SO(p, g; ¢) (1.22)
extension
It is easily verified that SO(p + ¢; ¢) and SO(p, ¢: c¢) have identical Lie
algebras. Therefore, the groups SO(p, g; r) are all real forms of the group
SO(p + q; ¢).
The group SO*(2n) is the subgroup of SO(2n, ¢) which preserves the
sesquilinear antisymmetric metric." With respect to the antisymmetric

metric
| ;Tn-{»’-"] (1.23)

it is easily verified that the Lie algebra of 2n x 2n matrices for SO*(2n) has
the structure

(1.24)

My | My, M,, skew symmetric
—M%¥, | M%, M,, hermitian

It may be easily verified that the complex extension of this algebra is
identical to the algebra of SO(2n, c).
A convenient set of bases for the common complex extension is

O = E) — ER) = —Of (1.25)
The commutation relations for the generators O’ are given by

[0, 0] = OF 6;, + OF 6;; — OF 6, — OF) 5, (1.26)

L



6. ORIGIN OF THE EMBEDDING GROUPS S0*(2n) AND
SU*(2n). The existence of the two unfamiliar “embedding groups”
SO*(2n) and SU*(2n) as real forms of SO(2n, ¢) and SI(2n, ¢) often comes as a
rude shock to aficionados of Lie group theory. The difficulty is further
compounded by the lack of a simple explanation for their existence. We
present one now.

The group U(n, ¢) consists of those n x n complex matrices which
preserve the canonical positive definite sesquilinear symmetric metric
g;; = 0;;. Each matrix element is a complex number; the Lie algebra obeys

M, = -M; g
There is a canonical representation of the complex numbers by real-valued

2 x 2 matrices [see Chapter 1, (3.10)]
reld r[ cos¢ sing

—sin¢g cos ¢

X + iy (x + iy)*

|

A b e
-y X y X

Under this representation of the complex numbers, every complex entry in
U(n, c) is replaced by a real 2 x 2 matrix. Since the 2n x 2n real matrices so
obtained preserve the metric

they form a subgroup of SO(2n, r).



We investigate the Lie algebra of this subgroup under

u,-j—b r,»j + iCiJ

in C, 1 2

inR,, 1 -1 2 =2
1 o cl 2 ¢}

1
—1|=ci 0 | =c} 1}
2| —r2 2 0 3

oM -2
~2|=c} —-ri|-c¢2 0

-

(1.40)

(1.41)

Since the Lie algebra consists of real antisymmetric matrices, it is clearly a

Lie subalgebra of so(2n, r).

It is useful at this point to rearrange the rows and columns of this matrix:

1 2 -1 =2
if o 2 el e
2| —-r,2 0 2 ¢t
(SM—b
1] —et —¢? 0 r?
2| —¢;? —¢;? -r2 0

A, B real

(1.42)

(1.43)



The Lie algebra so(2n, r) can be written as the direct sum of two vector

subspaces I @ p:
f: The subspace of matrices (1.43), which form a 2n x 2n real matrix

representation of u(n, ¢).
p: An orthogonal complementary subspace whose matrices have the

general structure
C D C'=-C
l+D —-CJ D'= —-D (1.44)

In short, we have the decomposition
so(2n,r)= u(mc) @ V.
A | B C D
[l e o=l
f & p (1.45)

It may be verified by direct calculation that the subspaces f, p obey the
commutation relations given symbolically by

[fflct
[Lp]l=p
[p,p] =1 (1.46)

The commutation properties are most easily seen after making a similarity
transformation using

1
—il, | +1I, |
[ A| B (A +iB| 0 At ="—A
S|—F+—| s ' = (1.48k)
|—B| A | 0 |A-iB B'= +B
[C D] 0 |D+iC C'=—-C
S|——| s '= (1.48p)
D |-C]| | D—iC| 0 | D'=—D

In this representation, the commutation properties of the matrix vector
subspaces are especially easy to compute. The results are indicated in the
following diagram:



[M,, M,] block diagonal off diagonal

W B B

block diagonal off diagonal
block % -
diagonal ’ %
off diagonal block diagonal

s V| | W 2 oo

Since so(2n, r) is closed under commutation, any block diagonal submatrix
arising from commutators belongs to the subalgebra f; any off-diagonal
submatrix arising from commutators belongs to the subspace p.

If the Weyl unitary trick is now applied to the compact generators in the
subspace p, they are converted to noncompact generators. Using (1.46), we
find that the commutation relations obeyed by f and p* = ip are

[t f] <t
[, p*] = p*
[p*, p*] = (- )t (1.46%)

Therefore, the matrices f @ p* are closed under commutation and form the
Lie algebra of some noncompact group

so¥(2n)= t @ip
= u(n, ¢) ®i[s0(2n, r) mod u(n, c)] (1.50)

Comment 1. The subalgebra of matrices in f is antihermitian and there-
fore maps onto a compact group under the EXPonential mapping. The
matrices in the subspace p(p* = ip) are antihermitian (hermitian) and there-
fore map onto compact (noncompact) cosets. The maximal compact sub-
group of SO*(2n) is U(n, c).

Comment 2. The Lie algebra of SO*(2n) satisfies the condition (1.24). The
group thus obeys the condition giving rise to (1.24) and may be defined
accordingly: SO*(2n) is the subgroup of SO(2n, ¢) which preserves the
sesquilinear antisymmetric metric.



The algebra g*, related to g by the Weyl unitary trick
a* =1 @ip (1.63)

describes the embedding groups SU*(2n), SO*(2n), respectively. These re-
sults are summarized in Table 6.2.

TABLE 6.2

SUMMARY OF THE REAL FORMS OF THE CLASSICAL GROUPS

Maximal Associated
Noncompact Compact Compact Dimension
Group Subgroup Group Coset Spaces
Process G* K G GYK, G/K
Indefinite SO(p, q) S0(p) ® SO(q) SO(p + q) Pq
metric (p.q) SU(p, q) S[U(p) ® Ulq)] SU(p + q) 2pq
preserving USp(2p, 2q) USp(2p) ® USp(2q) USp(2p + 2q) 4pq
groups >Ulp,q;:Q) ~>U(p;Q)®U(q;Q) =~Ulp+4:0Q)
1
Subfield Si(n, ) SO(n) SU(n, ¢) ""‘; ) _
restriction Sp(2n, r) Uln, ¢) USp(2n) nin + 1)
=U(n; Q)
Embedding SO0*(2n) Uln, ¢) SO(2n) n(n - 1)
groups SU*(2n) UsSp(2n) SU(2n) 2n(2n — 1) I
~ U, Q) 2

In his 2008 book Lie Groups, Physics, and Geometry, Robert Gilmore refers to his 1974 book containing
the above quotes, saying: “... Many years ago | wrote the book Lie Groups, Lie Algebras, and Some of
Their Applications (NewYork:Wiley, 1974). That was a big book: long and difficult. ... | ... promise[d] that
some day | would ... rewrite and shrink the book ... in a way that was easy for students to acquire and to
assimilate ...”. However, | think that the details in the “long and difficult” book are important for working out
details of physics models such as my E8 Physics, so | very much like it despite its being “difficult”. For
example beyond Real Forms of E8, the “long and difficult” book contains at page 349

SU(2,2) +1 SO(4,2) SO(4,2)is one of the groups whose Green’s functions 13,14

may give information on the fine structure constant.

13. A. Wyler, L'espace symétrique du groupe des équations de Maxwell, C.R. Acad. Sci. Paris
269, Ser. A, 743-745 (1969).

14. A. Wyler, Les groupes des potentiels de Coulomb et de Yukawa, C.R. Acad. Sci. Paris 272,
Ser. A, 186-188 (1971).

which is perhaps the only serious reference in any influential math or physics books to the techniques of
Armand Wyler that | use in my E8 Physics.



In summary,
here is how Our Universe Evolved in terms of my E8 Physics model:

When Our Planck Scale Universe emerged from its Parent Universe by Quantum
Fluictuation it was described by SO(16) symmetry of Compact E8(-248).

When Our Universe was expanding rapidly during Octonionic Non-Unitary
Inflation it unfolded from Finite Elliptic Compact to Infinite Hyperbolic
NonCompact SO(8,8) symmetry of NonCompact Split EVIII E8(8).

That transition was a shifting of SO(16) symmetry from E8(-248) to E8(8)
followed by a Weyl Unitary Trick within E8(8) from SO(16) to SO(8,8).

When Inflation ended 8-dim Octonionic Spacetime was broken into

(4+4)-dim Unitary Quaternionic M4 x CP2 Kaluza-Klein Spacetime with SO*(16)
symmetry of EIX E8(-24).

That transition was a Weyl Unitary Trick within E8(8) from SO(8,8) to SO*(16)
followed by a shifting of SO*(16) symmetry from E8(8) to E8(-24).

In resulting E8 Physics model, the geometry of E8 defines a realistic Classical Local
Lagrangian. Since E8 is embedded in the Real Clifford Algebra Cl(16) = CI(8)xCI(8),
8-Periodiciity allows construction of a generalized Hyperfinite 111 von Neumann factor
by taking the completion of the union of all tensor products of Cl(16) which is

an Algebraic Quantum Field Theory (AQFT) that is naturally compatible with

the realistic E8 Lagrangian. Therefore E8 Physics, which allows calculation of Force
Strength and Particle Mass ratios, etc, using the basic ideas of Armand Wyler,

fulfills the prediction of Robert Gilmore in his 1974 “long and difficult” book:

?7(1970- ). It now

seems possible that Lie group theory, together with differential geometry,
harmonic analysis, and some devious arguments, might be able to predict
some of Nature’s dimensionless numbers (o, m,/m,, m,/m,, G*/he, ...). In
retrospect, it seems clear that the application of group theory to physical
problems represents the dividing line between kinematics and dynamics.
The group theory gives the overall structure of the spectrum; the dynamics
serves to define only the scale. We are looking forward to the day when
Lie groups can be pushed to give also the dynamics, or scale.



